Haier SERVICE MANAUL

Wall Mounted Type

T-Series

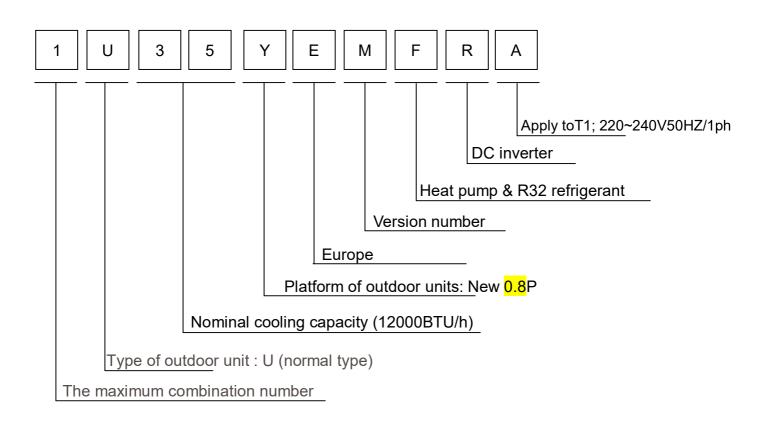
Model No.1U35YEMFRA

This service information is designed for experienced repair technicians only and is not designed for use by the general public. It does not contain warnings or cautions to advise non-technical individuals of potential dangers in attempting to service a product. Products powered by electricity should be serviced or repaired only by experienced professional technicians. Any attempt to service or Repair the product or products dealt with in this service information by anyone else could result in serious injury or death

2018 (Qingdao Haier Air Conditioner General corp. , Ltd) All rights reserved. Unauthorized copying and distribution is a violation of law

Haier Group

Version: V1 Date: 2



Contents

1.Introduction	1
2.Specifications	7
3.Sensors list	8
4.Pinping diagrams	9
5.Operation range	10
6.Printed Circuit Board Connector Wiring Diagram 错	诗误!未定义书签 。
7.Outdoor Functions and Control	错误!未定义书签。
8.Dimensional drawings	25
10.Service Diagnosis	诗误!未定义书签 。
11.Performence and cerves diagrams	42
12.Sound level	49
13.Circuit diagrams	持误!未定义书签。

1.Introduction

1.1 Model name explanation

1.2 Safety Cautions

Be sure to read the following safety cautions before conducting repair work.

The caution items are classified into "Warning" and "Caution". The "Warning" items are especially important since they can lead to death or serious injury if they are not followed closely. The "Caution" items can also lead

to serious accidents under some conditions if they are not followed. Therefore, be sure to observe all the safety

caution items described below.

About the pictograms

- \triangle This symbol indicates an item for which caution must be exercised.
 - The pictogram shows the item to which attention must be paid.
- \circ This symbol indicates a prohibited action.

The prohibited item or action is shown inside or near the symbol.

• This symbol indicates an action that must be taken, or an instruction.

The instruction is shown inside or near the symbol.

After the repair work is complete, be sure to conduct a test operation to ensure that the equipment operates Normally, and explain the cautions for operating the product to the customer.

1.2.1 Caution in Repair

Warning	
Be sure to disconnect the power cable plug from the plug socket before disassembling the equipment for	
a repair.	
Working on the equipment that is connected to a power supply can cause an electrical shook.	
If it is necessary to supply power to the equipment to conduct the repair or inspecting the circuits, do not	
touch any electrically charged sections of the equipment.	
If the refrigerant gas discharges during the repair work, do not touch the discharging refrigerant gas .The	$\mathbf{\wedge}$
refrigerant gas can cause frostbite.	(\mathbf{N})
When disconnecting the suction or discharge pipe of the compressor at the welded section, release the	
refrigerant gas completely at a well-ventilated place first.	
If there is a gas remaining inside the compressor , the refrigerant gas or cooling machine oil discharges	
when the pipe is disconnected, and it can cause injury.	
If the refrigerant gas leaks during the repair work, ventilate the area. The refrigerant gas can generate	
toxic gases when it contacts flames.	\mathbf{e}
The step-up capacitor supplies high-voltage electricity to the electrical components of the outdoor unit.	•
Be sure to discharge the capacitor completely before conducting repair work . A charged capacitor can	
cause an electrical shock.	
Do not start or stop the air conditioner operation by plugging or unplugging the power cable plug.	\sim
Plugging or unplugging the power cable plug to operate the equipment can cause an electrical shock or	
fire.	

Warning	
Do not repair the electrical components with wet hands . Working on the equipment with wet hands can cause an electrical shock	\bigcirc
Do not clean the air conditioner by splashing water. Washing the unit with water can cause an electrical shock.	\bigcirc
Be sure to provide the grounding when repairing the equipment in a humid or wet place, to avoid electrical shock.	
Be sure to turn off the power switch and unplug the power cable when cleaning the equipment. The internal fan rotates at a high speed, and cause injury.	
Do not tilt the unit when removing it. The water inside the unit can spill and wet the furniture and floor.	\bigcirc
Be sure to check that the cooling cycle section has cooled down sufficiently before conducting repair	
work. Working on the unit when the cooling cycle section is hot can cause burns.	
Use the welder in a well-ventilated place. Using the welder in an enclosed room can cause oxygen deficiency.	0

1.2.2 Cautions Regarding Products after Repair

Warning	
Be sure to use parts listed in the service parts list of the applicable model and appropriate tools to	
conduct repair work. Never attempt to modify the equipment. The use of inappropriate parts or tools can	
cause an electrical shock, excessive heat generation or fire.	
When relocating the equipment, make sure that the new installation site has sufficient strength to	
withstand the weight of the equipment.	
If the installation site does not have sufficient strength and if the installation work is not conducted	
securely, the equipment can fall and cause injury.	
Be sure to install the product correctly by using the provided standard installation frame.	For
Incorrect use of the installation frame and improper installation can cause the equipment to fall, resulting	integral
in injury.	units only
	For
Be sure to install the product securely in the installation frame mounted on a window frame.	
If the unit is not securely mounted, it can fall and cause injury.	units only

Warning	
Be sure to use an exclusive power circuit for the equipment, and follow the technical standards related to the electrical equipment, the internal wiring regulations and the instruction manual for installation when conducting electrical work. Insufficient power circuit capacity and improper electrical work can cause an electrical shock or fire.	
Be sure to use the specified cable to connect between the indoor and outdoor units. Make the connections securely and route the cable properly so that there is no force pulling the cable at the connection terminals. Improper connections can cause excessive heat generation or fire.	
When connecting the cable between the indoor and outdoor units, make sure that the terminal cover does not lift off or dismount because of the cable. If the cover is not mounted properly, the terminal connection section can cause an electrical shock, excessive heat generation or fire.	
Do not damage or modify the power cable. Damaged or modified power cable can cause an electrical shock or fire. Placing heavy items on the power cable, and heating or pulling the power cable can damage the cable.	\bigcirc
Do not mix air or gas other than the specified refrigerant (R-410A / R22) in the refrigerant system. If air enters the cooling system, an excessively high pressure results, causing equipment damage and injury.	
If the refrigerant gas leaks, be sure to locate the leak and repair it before charging the refrigerant. After charging refrigerant, make sure that there is no refrigerant leak. If the leak cannot be located and the repair work must be stopped, be sure to perform pump-down and close the service valve, to prevent the refrigerant gas from leaking into the room. The refrigerant gas itself is harmless, but it can generate toxic gases when it contacts flames, such as fan and other heaters, stoves and ranges.	0
When replacing the coin battery in the remote controller, be sure to disposed of the old battery to prevent children from swallowing it. If a child swallows the coin battery, see a doctor immediately.	

Caution

Installation of a leakage breaker is necessary in some cases depending on the conditions of the installation site, to prevent electrical shocks.

Do not install the equipment in a place where there is a possibility of combustible gas leaks. If a combustible gas leaks and remains around the unit, it can cause a fire.

Be sure to install the packing and seal on the installation frame properly. If the packing and seal are not installed properly, water can enter the room and wet the furniture and floor.

1.2.3 Inspection after Repair

Warning

Check to make sure that the power cable plug is not dirty or loose, then insert the plug into a power outlet all the way.

If the plug has dust or loose connection, it can cause an electrical shock or fire.

If the power cable and lead wires have scratches or deteriorated, be sure to replace them. Damaged cable and wires can cause an electrical shock, excessive heat generation or fire.

Warning

Do not use a joined power cable or extension cable, or share the same power outlet with other electrical appliances since it can cause an electrical shock, excessive heat generation or fire.

$\mathbf{\nabla}$

Caution	
Check to see if the parts and wires are mounted and connected properly, and if the connections at the	
soldered or crimped terminals are secure. Improper installation and connections can cause excessive	
heat generation, fire or an electrical shock.	
If the installation platform or frame has corroded, replace it. Corroded installation platform or frame can	
cause the unit to fall, resulting in injury.	
Check the grounding, and repair it if the equipment is not properly grounded. Improper grounding can cause an electrical shock.	
Be sure to measure the insulation resistance after the repair, and make sure that the resistance is 1 M	
ohm or higher.	
Faulty insulation can cause an electrical shock.	
Be sure to check the drainage of the indoor unit after the repair.	
Faulty drainage can cause the water to enter the room and wet the furniture and floor.	

1.2.4 Using Icons

Icons are used to attract the attention of the reader to specific information. The meaning of each icon is described in the table below:

1.2.5 Using Icons List

Icon	Type of Information	Description
fi _{Note}	Note	A "note" provides information that is not indispensable, but may nevertheless be valuable to the reader, such as tips and tricks.
A Caution	Caution	A "caution" is used when there is danger that the reader, through incorrect manipulation, may damage equipment, loose data, get an unexpected result or has to restart (part of) a procedure.
	Warning	A "warning" is used when there is danger of personal injury.
5	Reference	A "reference" guides the reader to other places in this binder or in this manual, where he/she will find additional information on a specific topic.

2.Specifications

NOMINAL DISTRIBUTION SYSTEM VOLTAGE			
Phase	/	1	
Frequency	Hz	50	
Voltage	V	230	

NOMINAL CAPACITY and NOMINAL INPUT				
		Cooling	heating	
Capacity rated	KW	3.50	3.6	
	Btu/h	11940	12286	
Power Consumption(Rated)	KW	1.24	1.05	
SEER/SCOP	W/W	6.1/A++	4.0/A+	
Annual energy consumption	KWh	201	980	
Moisture Removal	m³/h	1.6*10 - ³		

TECHNICAL SPECIFICATIONS-UNIT			
Dimensions	H*W*D	mm	700×245×544
Packaged	H*W*D	mm	845×320×593
Dimensions		mm	043^320^393
Weight	1	KG	22.8
Gross weight	1	KG	25.3
Sound level	Sound pressure	dB	50
	Sound power	dB	62

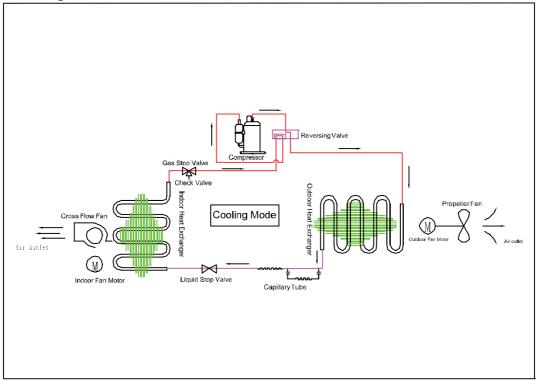
ELECTRICAL SPECIFICATIONS				
	Cooling(09K/12K)	heating(09K/12K)		
Nominal running current	А	5.5	4.6	
Maximum running current	А	7.1	7.1	

TECHNICAL SPECIFICATIONS-PARTS					
		cooling	heating		
	Туре		Rotary Compressor		
	Model		GSD102RKQA6JT6		
Compressor	Motor output	W	992		
	Oil type		ACS-68Rored	luivalent	
	Oil charge volume	L	0.32		
	Туре		Axial fan		
Fan	Motor output	W	40		
Fall	Air flow rate(high)	m³/h	2100		
	Speed(high/low)	rpm	850/300		
Heat	Туре		ML fin-φ7HI-HX tube		
exchanger	Row*stage*fitch		1*12*1.4		
TECHNICAL SPECIFICATIONS-OTHERS					

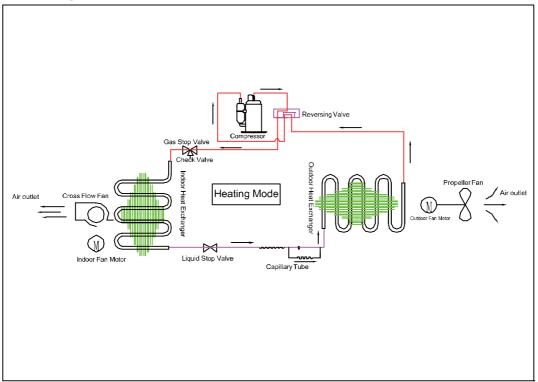
				Opeoline
	Refrigerant type			R32
	Refrigerant charge		KG	0.5
Refrigerant	Maximum allowable d	istance		45
circuit	between indoor an ou	tdoor	m	15
	Maximum allowable le	evel difference	m	10
	Refrigerant control	CAPILLARY		
Dining constant		liquid	mm	Ф6.35
Piping connect		gas	mm	Ф9.52
(external diame	eter)	drain	mm	Ф16
Heat insulation t	уре		Both liquid and Gas pipes	
Max. piping Len	gth		m	15
Max. Level Difference		m	10	
Chargeless	Chargeless		m	5
Amount of Addit	ional Charge of Refriger	ant	g/m	20

Note: the data are based on the conditions shown in the table below

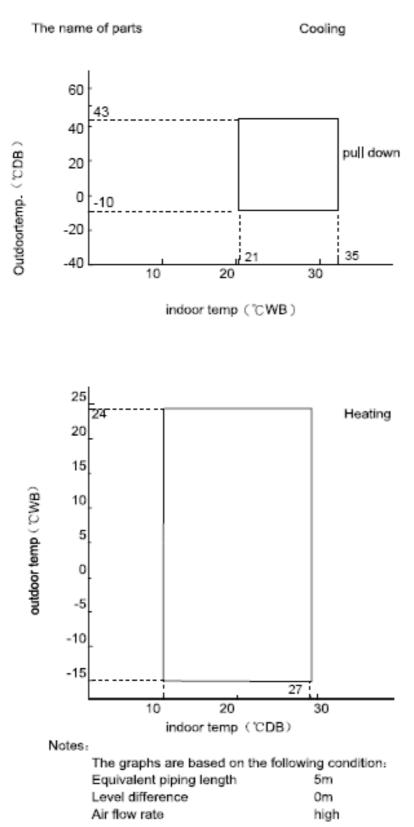
cooling	heating	Piping length
Indoor: 27℃DB/19℃WB	Indoor:20°CDB	Eree
Outdoor: 35℃DB/24℃WB	Outdoor: 7℃DB/6℃WB	5m


Conversation formulae	
Kcal/h= KW×860	
Btu/h= KW×3414	
cfm=m³/min×35.3	

3.Sensors list


type	Description	Qty
Ambient sensor	Its used for detecting temperature of outdoor side	
Defrosting sensor	Its used for controlling outdoor defrosting at heating mode	1
Discharging sensor	Its used for compressor in case of over-heat	

4.Pinping diagrams


Cooling mode

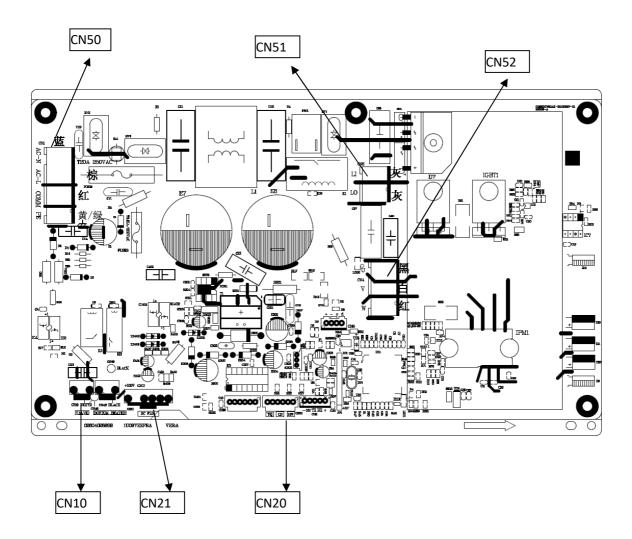
Heating mode

5.Operation range

6. Printed circuit board connector wiring diagram

Connectors

PCB For 1U09YEMFRA/1U12YEMFRA


- 1) CN50 Connector for N/ L/COM/PE
- 2) CN52 Connector for the U, V, W wire of the compressor
- 3) CN51 (LI /LO) Connector for reactor
- 4) CN21 Connector for fan motor
- 5) CN10 Connector for four way valve coil
- 6) CN20 Connector for Temperature sensor

Notes: Other Designations

- 1) FUSE 1, (20A, 250VAC); FUSE 2(3.15A, 250VAC)
- 2) LED 1 Keep light representative normal, if keep flash interval representative trouble Alarm

3) RV1, RV2, RV3 Varistor

PCB

7.1 Main functions and control specification

7.1.1 The operation frequency of outdoor unit and its control

7.1.1.1 The operation frequency control of compressor

The operation frequency scope of compressor:

Mode	Minimum operation frequency	Maximum operation frequency
Heating	28Hz	98Hz
Cooling	28Hz	75Hz

7.1.1.2 The starting of compressor

When the compressor is started for the first time, it must be kept under the conditions of 58Hz,88Hz for one minute, one minute (the overheating protection of the outdoor unit air-blowing temperature, immediately decrease the frequency when the compressor is overflowing and releasing the pressure), then it can be operated towards the target frequency. When the machine runs normally, there's no such process. After starting the compressor for operation, the compressor should run according to the calculated frequency, and every determined frequency for protection should be prior to the calculated frequency.

7.1.1.3 The speeds of increasing or decreasing the frequency of the compressor The speed of increasing or decreasing the frequency rapidly 1 ------1HZ/second The speed of increasing or decreasing the frequency slowly 2 ------1HZ/10seconds

7.1.1.4 The calculation of the compressor's frequency

Refrigeration(dehumidification) mode:

Pn=(Nh_c- S_c)*10≥30(40)	outdoor environment control
Pn=(Nh_c- S_c) *10<30(40)	PID control

Heating mode:

(Nh_c=indoor environment temperature S_c=setting temperature)

1) The minimum/maximum frequency limitation

A. While refrigerating: F-MAX-r is the maximum operation frequency of the compressor; F-MIN-r is the minimum operation frequency of the compressor.

B. While heating: F-MAX-d is the maximum operation frequency of the compressor; F-MIN-d is the minimum operation frequency of the compressor.

 $\label{eq:2} \ensuremath{\text{2}}\xspace) The frequency limitation which is affected by the environment temperature.$

(Wh_c= environment temperature)

Heating mode:

Serial No.	Temperature scope	Frequency limitation
1	Wh_c≪-20	Max_hz1 98 HZ
2	Wh_c≪-10	Max_hz2 98 HZ

3	Wh_c≪-5	Max_hz3	98 HZ
4	Wh_c≪0	Max_hz4	98 HZ
5	Wh_c≪5	Max_hz5	98 HZ
6	Wh_c≪10	Max_hz6	81 HZ
7	Wh_c≪16	Max_hz7	70 HZ
8	Wh_c≪22	Max_hz8	61 HZ
9	Wh_c>22	Max_hz9	51 HZ

Remarks: The above are the maximum frequency limitations of the complete appliance which are affected by the environment, and they have nothing to do with the ability of the indoor unit. Refrigeration/dehumidification mode:

 •		
Serial No.	Temperature scope	Frequency limitation
1	Wh_c≪16	Max_hz1 40 HZ
2	Wh_c≪22	Max_hz2 48 HZ
3	Wh_c≪29	Max_hz3 59 HZ
4	Wh_c≪32	Max_hz4 70 HZ
5	Wh_c≪40	Max_hz5 74 HZ
6	Wh_c≪48	Max_hz6 59 HZ
7	Wh_c>48	Max_hz7 41 HZ

Remarks: the above are not only the maximum frequency limitations of the complete appliance which are affected by the environment, but also the maximum ability limitation of the system. When the starting ability is not the maximum, its maximum frequency limitation is calculated by the following equations:

The frequency limitation which is affected by the temperature and under the condition of actual ability=the actual running system ability*the maximum frequency which is limited by the temperature and under the condition of maximum ability/the maximum designing ability of the system

Refrigeration/dehumidification mode:

The indoor setting airflow speed		Low	Medium	Quiet
The percentage of the				
rated frequency K		44%	72%	29HZ
(09K/12K)				

Heating mode:

The indoor setting	Low	Medium	Quiet
airflow speed	LOW	Medium	Quiet
The percentage of the			
rated frequency K	80%	90%	49HZ
(09K/12K)			

The calculation of the actual output frequency:

F= F-ED-*(rated frequency) \times K

F-ED-*(rated frequency)= The frequency which is limited by the outdoor environment temperature Notes:

When refrigerating, it is needed to satisfy F-MIN-d(compressor's Min_hz)< F<F-MAX-d(compressor's Max_hz)

When heating, it is needed to satisfy

F-MIN-r (compressor's Min_hz)< F<F-MAX-r (compressor's Max_hz)

PID control :

The innital frequency Sn is determined by Pn . We can calculate Hzoutf according to the value of Kp ,Ki ,Kd, Out_gain,Pn.Then , Fn = Sn + Hzoutf. The value of Fn is calculated in each sample time (60 seconds),and Fn is adujusted according to previous frequency of Sn and filtered output of Hzoutf.

7.1.2 The outdoor fan control

When the fan is changed among every airflow speed (including stop blowing), in order to avoid the airflow speed from skipping frequently, it must be kept under each mode for over 30 seconds, and then it can be changed to another mode (when refrigerating, the time is changed to 15 seconds).

Within three minutes of compressor starting, the compressor is controled according to the ambient temperature.

Tao (℃)	Tao <22 ℃	22℃< Tao <29℃	Tao≥29 ℃
Refrigeration/dehumidification	3nd level /3 level	4rd level /4th level	5th level /5th level
(09K/12K)			
Tao (°C)	Tao <12℃	12℃< Tao <18 ℃	Tao≷18℃
Heating	3th level /3th level	3th level /3th level	3rd level /3rd level

After 3 minutes, the compressor is controled according to the ambient temperature and the frequency of the compressor.

		<51 Hz	51 Hz-70Hz	≥70	Hz
Refrigeration	n/dehumidification				
frequency (Hz) (09K/12K)				
	≤22	3nd level	4rd level		5 th level
T					
Tao (℃)	22-29	4rd level	5 th level		6 th level
	≥29	6 th level			
Heating	frequency (Hz)	<51 Hz	51-90 Hz	≥90	Hz
(09K/12K)	(09K/12K)				
	≤10	5nd level	7rd level	7 th l	evel
Tao (℃)	10-16	4rd level	5 th level	7 th l	evel
	≥16	3nd level	4nd level	6nd l	evel

7.1.3 Four way control

For the details of defrosting four-way valve control, see the defrosting process.

Four way working in other ways:

Under the mode of heating, open the four-way valve, when the compressor is not started or changed to non-heating mode, make sure the compressor is stoped for 2 minutes, and then close the four-way valve.

7.1.4 Protection function

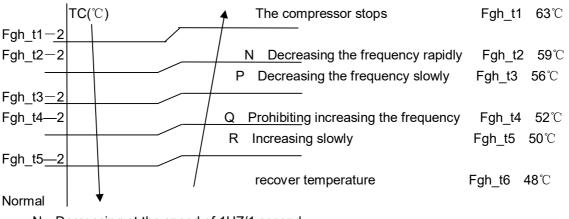
7.1.4.1 TTC high temperature-preventing protection

Once the machine is started, it can run TTC(air-blowing temp) overheating protection of air-blowing, but air-blowing sensor malfunction must alarm after 4 minutes during which the

compressor is started (during the course of self-detection, there's no such limitation)

Sensor detection methods: 100 times (one cycle of procedure run is one time, and about 5ms, detection method for each time: continuously sampling for 8 times, then order them and take the mean value of the middle 2 values), take the mean value.

TTG (°C)


	12K 🔺 💧	Abnormal stop
	107 /	
-		Decreasing the frequency rapidly (1HZ/second)
_	102 /	
-		Decreasing the frequency slowly (1HZ/10seconds)
_	97 /	
		The frequency doesn't change.
	92 /	
-		Increasing the frequency (1HZ/10second)
	78	
-		✓ Increasing the frequency (1HZ/1second)
		•

TTC>=107 $^\circ\!\mathrm{C}$ lasts for 20 seconds. Overheating protection of air-blowing, alarm malfunction to the indoor, others don't last.

7.1.4.2 TC high temperature-preventing control of the indoor heating unit:

Tpg_indoor is the highest value of the effective indoor unit (start it and it is in accord with the running state). TC=indoor coil temp.

The indoor heat exchanger sensor tests the temperature of the indoor heat exchanger. If the temperature is higher than 63°C, decrease the rotate speed of the compressor and do the high temperature-preventing protection of the indoor heat exchanger; if the temperature of the indoor heat exchanger is lower than 48°C, recover to the normal control.

- N: Decreasing at the speed of 1HZ/1 second
- P: Decreasing at the speed of 1Hz/10 seconds
- Q: Continue to keep the last-time instruction cycle
- R: Increasing at the speed of 1Hz/10seconds
- Remarks: the outdoor unit
- 7.1.4.3 The control of preventing the over current of the compressor

• During the starting process of the compressor, if the current of the compressor is greater than 12.5A for 3 seconds, stop the compressor and alarm, after 3 minutes, start it again, if such state appears 3 times in 20 minutes, stop the compressor and alarm, and confirm the malfunction. Then continue to run it only after the power is off.

• During the starting process of the compressor, if the AC current is greater than 9A, the frequency of the compressor decreases at the speed of 1HZ/second.

•During the starting process of the compressor, if the AC current is greater than 8A, the frequency of the compressor decreases at the speed of 1HZ/10second.

• During the starting process of the compressor, if the AC current is greater than 7.5A, the frequency of the compressor increases at the prohibited speed.

• During the starting process of the compressor, if the AC current is greater than 6.5A, the frequency of the compressor increases at the speed of no faster than 1HZ/10second.

7.1.4.4 The protection function of AC current:

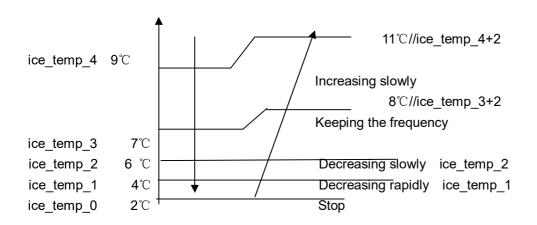
During the starting process of the compressor, if the AC current is greater than 10.5A for 5 seconds, stop the compressor and alarm, after 3 minutes, start it again, if such state appears 3 times in 20 minutes, stop the compressor and alarm, and confirm the malfunction. Then continue to run it only after the the power is off.

During the starting process of the compressor, if the AC current is greater than 8A, the frequency of the compressor decreases at the speed of 2HZ/10second.

During the starting process of the compressor, if the AC current is greater than 7A, the frequency of the compressor increases at the prohibited speed.

During the starting process of the compressor, if the AC current is greater than 6A, the frequency of the compressor increases at the speed of no faster than 2HZ/10second.

Remarks: when the outdoor temperature is high, there's compensation for AC current protection.


(1) When the outdoor environment temperature is higher than 40° C, AC current protection value decreases by 20% (09K/12K).

(2) When the outdoor environment temperature is higher than 50 $^\circ\!C$, AC current protection value decreases by 20% (09K/12K).

7.1.4.5 Anti-freezing protection of the indoor heat exchanger

When refrigerating/heating, prevent freezing.

Tpg_indoor is the minimum value of the effective indoor unit (start it and it is in accord with the running state).

When Tpg_indoor \langle ice_temp_1, the frequency of the compressor decreases at the speed of 1HZ/1second.

When Tpg_indoor (ice_temp_2, the frequency of the compressor decreases at the speed of

1HZ/10seconds.

When Tpg_indoor begins to rise again, and ice_temp_2 \leq Tpg_indoor \leq ice_temp_3, the frequency of the compressor doesn't change.

When ice_temp_3 $Tpg_indoor (ice_temp_4^{\circ}C)$, the frequency of the compressor increases at the speed of 1HZ/10seconds.

For example, Tpg_indoor $\leq 2^{\circ}$ C, last for 2 minutes, and then the outdoor unit will stop, and report underload malfunction, but don't send malfunction report to the indoor.

The compressor stops for more than 3 minutes, Tpg_indoor> ice_temp_4+2 $^\circ\!C$, the compressor recovers.

7.1.4.6 The frequency limitation of modification rate

In the field which is controlled by high frequency, if the modification rate is not high enough, the control-driven chip will enter into weak magnetic control, this will help to relieve the problem of modification rate. If during the course of weak magnetic control, the modification rate is still not high enough, enter into the control of decreasing frequency until the alarm of modification rate is relieved.

7.2 Value of Thermistor

Ambient Sensor, Defrosting Sensor, Pipe sensor

R25℃=10K Ω ±	= 3% B25℃/50℃= 3	3700K±3%		1		
Temp.(℃)	Max.(KΩ)	Normal(KΩ)	Min.(KΩ)	Tolerance(°C)		
-30	165.2170	147.9497	132.3678	-1.94	1.75	
-29	155.5754	139.5600	125.0806	-1.93	1.74	
-28	146.5609	131.7022	118.2434	-1.91	1.73	
-27	138.1285	124.3392	111.8256	-1.89	1.71	
-26	130.2371	117.4366	105.7989	-1.87	1.70	
-25	122.8484	110.9627	100.1367	-1.85	1.69	
-24	115.9272	104.8882	94.8149	-1.83	1.67	
-23	109.4410	99.1858	89.8106	-1.81	1.66	
-22	103.3598	93.8305	85.1031	-1.80	1.64	
-21	97.6556	88.7989	80.6728	-1.78	1.63	
-20	92.3028	84.0695	76.5017	-1.76	1.62	
-19	87.2775	79.6222	72.5729	-1.74	1.60	
-18	82.5577	75.4384	68.8710	-1.72	1.59	
-17	78.1230	71.5010	65.3815	-1.70	1.57	
-16	73.9543	67.7939	62.0907	-1.68	1.55	
-15	70.0342	64.3023	58.9863	-1.66	1.54	
-14	66.3463	61.0123	56.0565	-1.64	1.52	
-13	62.8755	57.9110	53.2905	-1.62	1.51	
-12	59.6076	54.9866	50.6781	-1.60	1.49	
-11	56.5296	52.2278	48.2099	-1.58	1.47	
-10	53.6294	49.6244	45.8771	-1.56	1.46	
-9	50.8956	47.1666	43.6714	-1.54	1.44	
-8	48.3178	44.8454	41.5851	-1.51	1.42	
-7	45.8860	42.6525	39.6112	-1.49	1.40	

				Functions and	control
-6	43.5912	40.5800	37.7429	-1.47	1.39
-5	41.4249	38.6207	35.9739	-1.45	1.37
-4	39.3792	36.7676	34.2983	-1.43	1.35
-3	37.4465	35.0144	32.7108	-1.41	1.33
-2	35.6202	33.3552	31.2062	-1.38	1.31
-1	33.8936	31.7844	29.7796	-1.36	1.29
0	32.2608	30.2968	28.4267	-1.34	1.28
1	30.7162	28.8875	27.1431	-1.32	1.26
2	29.2545	27.5519	25.9250	-1.29	1.24
3	27.8708	26.2858	24.7686	-1.27	1.22
4	26.5605	25.0851	23.6704	-1.25	1.20
5	25.3193	23.9462	22.6273	-1.23	1.18
6	24.1432	22.8656	21.6361	-1.20	1.16
7	23.0284	21.8398	20.6939	-1.18	1.14
8	21.9714	20.8659	19.7982	-1.15	1.12
9	20.9688	19.9409	18.9463	-1.13	1.09
10	20.0176	19.0621	18.1358	-1.11	1.07
11	19.1149	18.2270	17.3646	-1.08	1.05
12	18.2580	17.4331	16.6305	-1.06	1.03
13	17.4442	16.6782	15.9315	-1.03	1.01
14	16.6711	15.9601	15.2657	-1.01	0.99
15	15.9366	15.2770	14.6315	-0.98	0.96
16	15.2385	14.6268	14.0271	-0.96	0.94
17	14.5748	14.0079	13.4510	-0.93	0.92
18	13.9436	13.4185	12.9017	-0.91	0.90
19	13.3431	12.8572	12.3778	-0.88	0.87
20	12.7718	12.3223	11.8780	-0.86	0.85
21	12.2280	11.8126	11.4011	-0.83	0.83
22	11.7102	11.3267	10.9459	-0.81	0.80
23	11.2172	10.8634	10.5114	-0.78	0.78
24	10.7475	10.4216	10.0964	-0.75	0.75
25	10.3000	10.0000	9.7000	-0.75	0.75
26	9.8975	9.5974	9.2980	-0.76	0.76
27	9.5129	9.2132	8.9148	-0.80	0.80
28	9.1454	8.8465	8.5496	-0.84	0.83
29	8.7942	8.4964	8.2013	-0.87	0.86
30	8.4583	8.1621	7.8691	-0.91	0.90
31	8.1371	7.8428	7.5522	-0.95	0.93
32	7.8299	7.5377	7.2498	-0.98	0.97
33	7.5359	7.2461	6.9611	-1.02	1.00
34	7.2546	6.9673	6.6854	-1.06	1.04
35	6.9852	6.7008	6.4222	-1.10	1.07
36	6.7273	6.4459	6.1707	-1.13	1.11
37	6.4803	6.2021	5.9304	-1.17	1.14

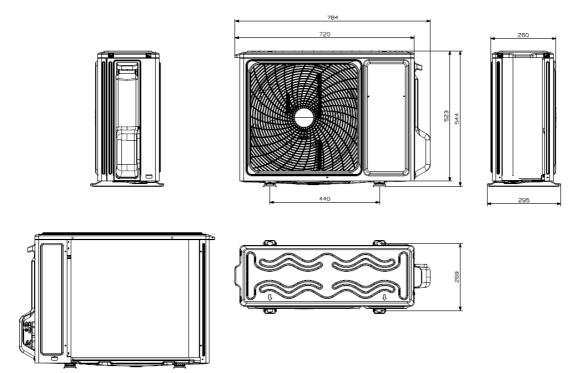
		1		Functions	and control
38	6.2437	5.9687	5.7007	-1.21	1.18
39	6.0170	5.7454	5.4812	-1.25	1.22
40	5.7997	5.5316	5.2712	-1.29	1.25
41	5.5914	5.3269	5.0704	-1.33	1.29
42	5.3916	5.1308	4.8783	-1.37	1.33
43	5.2001	4.9430	4.6944	-1.41	1.36
44	5.0163	4.7630	4.5185	-1.45	1.40
45	4.8400	4.5905	4.3500	-1.49	1.44
46	4.6708	4.4252	4.1887	-1.53	1.47
47	4.5083	4.2666	4.0342	-1.57	1.51
48	4.3524	4.1145	3.8862	-1.61	1.55
49	4.2026	3.9686	3.7443	-1.65	1.59
50	4.0588	3.8287	3.6084	-1.70	1.62
51	3.9206	3.6943	3.4780	-1.74	1.66
52	3.7878	3.5654	3.3531	-1.78	1.70
53	3.6601	3.4416	3.2332	-1.82	1.74
54	3.5374	3.3227	3.1183	-1.87	1.78
55	3.4195	3.2085	3.0079	-1.91	1.82
56	3.3060	3.0989	2.9021	-1.95	1.85
57	3.1969	2.9935	2.8005	-2.00	1.89
58	3.0919	2.8922	2.7029	-2.04	1.93
59	2.9909	2.7948	2.6092	-2.08	1.97
60	2.8936	2.7012	2.5193	-2.13	2.01
61	2.8000	2.6112	2.4328	-2.17	2.05
62	2.7099	2.5246	2.3498	-2.22	2.09
63	2.6232	2.4413	2.2700	-2.26	2.13
64	2.5396	2.3611	2.1932	-2.31	2.17
65	2.4591	2.2840	2.1195	-2.36	2.21
66	2.3815	2.2098	2.0486	-2.40	2.25
67	2.3068	2.1383	1.9803	-2.45	2.29
68	2.2347	2.0695	1.9147	-2.49	2.34
69	2.1652	2.0032	1.8516	-2.54	2.38
70	2.0983	1.9393	1.7908	-2.59	2.42
71	2.0337	1.8778	1.7324	-2.63	2.46
72	1.9714	1.8186	1.6761	-2.68	2.50
73	1.9113	1.7614	1.6219	-2.73	2.54
74	1.8533	1.7064	1.5697	-2.78	2.58
75	1.7974	1.6533	1.5194	-2.83	2.63
76	1.7434	1.6021	1.4710	-2.88	2.67
77	1.6913	1.5528	1.4243	-2.92	2.71
78	1.6409	1.5051	1.3794	-2.97	2.75
79	1.5923	1.4592	1.3360	-3.02	2.80
80	1.5454	1.4149	1.2942	-3.07	2.84
81	1.5000	1.3721	1.2540	-3.12	2.88

				Functions	
82	1.4562	1.3308	1.2151	-3.17	2.93
83	1.4139	1.2910	1.1776	-3.22	2.97
84	1.3730	1.2525	1.1415	-3.27	3.01
85	1.3335	1.2153	1.1066	-3.32	3.06
86	1.2953	1.1794	1.0730	-3.38	3.10
87	1.2583	1.1448	1.0405	-3.43	3.15
88	1.2226	1.1113	1.0092	-3.48	3.19
89	1.1880	1.0789	0.9789	-3.53	3.24
90	1.1546	1.0476	0.9497	-3.58	3.28
91	1.1223	1.0174	0.9215	-3.64	3.33
92	1.0910	0.9882	0.8942	-3.69	3.37
93	1.0607	0.9599	0.8679	-3.74	3.42
94	1.0314	0.9326	0.8424	-3.80	3.46
95	1.0030	0.9061	0.8179	-3.85	3.51
96	0.9756	0.8806	0.7941	-3.90	3.55
97	0.9490	0.8558	0.7711	-3.96	3.60
98	0.9232	0.8319	0.7489	-4.01	3.64
99	0.8983	0.8088	0.7275	-4.07	3.69
100	0.8741	0.7863	0.7067	-4.12	3.74
101	0.8507	0.7646	0.6867	-4.18	3.78
102	0.8281	0.7436	0.6672	-4.23	3.83
103	0.8061	0.7233	0.6484	-4.29	3.88
104	0.7848	0.7036	0.6303	-4.34	3.92
105	0.7641	0.6845	0.6127	-4.40	3.97
106	0.7441	0.6661	0.5957	-4.46	4.02
107	0.7247	0.6482	0.5792	-4.51	4.07
108	0.7059	0.6308	0.5632	-4.57	4.12
109	0.6877	0.6140	0.5478	-4.63	4.16
110	0.6700	0.5977	0.5328	-4.69	4.21
111	0.6528	0.5820	0.5183	-4.74	4.26
112	0.6361	0.5667	0.5043	-4.80	4.31
113	0.6200	0.5518	0.4907	-4.86	4.36
114	0.6043	0.5374	0.4775	-4.92	4.41
115	0.5891	0.5235	0.4648	-4.98	4.45
116	0.5743	0.5100	0.4524	-5.04	4.50
117	0.5600	0.4968	0.4404	-5.10	4.55
118	0.5460	0.4841	0.4288	-5.16	4.60
119	0.5325	0.4717	0.4175	-5.22	4.65
120	0.5194	0.4597	0.4066	-5.28	4.70

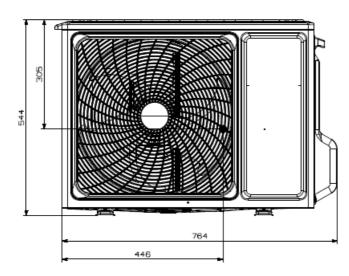
Discharging Sensor

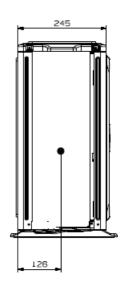
R80℃=50K Ω ±3%

B25/80°C=4450K±3%


Temp.((℃))	Max.(KΩ)	Normal(KΩ)	Min.(KΩ)	Tolerance(℃)
-30	14646.0505	12061.7438	9924.4999	-2.96	2.45
-29	13654.1707	11267.8730	9290.2526	-2.95	2.44
-28	12735.8378	10531.3695	8700.6388	-2.93	2.44
-27	11885.1336	9847.7240	8152.2338	-2.92	2.43
-26	11096.6531	9212.8101	7641.8972	-2.91	2.42
-25	10365.4565	8622.8491	7166.7474	-2.90	2.42
-24	9687.0270	8074.3787	6724.1389	-2.88	2.41
-23	9057.2314	7564.2244	6311.6413	-2.87	2.41
-22	8472.2852	7089.4741	5927.0206	-2.86	2.40
-21	7928.7217	6647.4547	5568.2222	-2.84	2.39
-20	7423.3626	6235.7109	5233.3554	-2.83	2.39
-19	6953.2930	5851.9864	4920.6791	-2.82	2.38
-18	6515.8375	5494.2064	4628.5894	-2.80	2.37
-17	6108.5393	5160.4621	4355.6078	-2.79	2.37
-16	5729.1413	4848.9963	4100.3708	-2.77	2.36
-15	5375.5683	4558.1906	3861.6201	-2.76	2.35
-14	5045.9114	4286.5535	3638.1938	-2.75	2.34
-13	4738.4141	4032.7098	3429.0191	-2.73	2.34
-12	4451.4586	3795.3910	3233.1039	-2.72	2.33
-11	4183.5548	3573.4260	3049.5312	-2.70	2.32
-10	3933.3289	3365.7336	2877.4527	-2.69	2.31
-9	3699.5139	3171.3148	2716.0828	-2.67	2.30
-8	3480.9407	2989.2460	2564.6945	-2.66	2.29
-7	3276.5302	2818.6731	2422.6139	-2.64	2.28
-6	3085.2854	2658.8058	2289.2164	-2.63	2.28
-5	2906.2851	2508.9126	2163.9230	-2.61	2.27
-4	2738.6777	2368.3158	2046.1961	-2.60	2.26
-3	2581.6752	2236.3876	1935.5371	-2.58	2.25
-2	2434.5487	2112.5459	1831.4826	-2.56	2.24
-1	2296.6230	1996.2509	1733.6024	-2.55	2.23
0	2167.2730	1887.0018	1641.4966	-2.53	2.22
1	2045.9191	1784.3336	1554.7931	-2.52	2.21
2	1932.0242	1687.8144	1473.1460	-2.50	2.20
3	1825.0899	1597.0431	1396.2333	-2.48	2.19
4	1724.6540	1511.6468	1323.7551	-2.47	2.17
5	1630.2870	1431.2787	1255.4324	-2.45	2.16
6	1541.5904	1355.6163	1191.0048	-2.43	2.15
7	1458.1938	1284.3593	1130.2298	-2.41	2.14
8	1379.7528	1217.2282	1072.8813	-2.40	2.13
9	1305.9472	1153.9626	1018.7481	-2.38	2.12

				Functions and	control
10	1236.4792	1094.3200	967.6334	-2.36	2.11
11	1171.0715	1038.0743	919.3533	-2.35	2.09
12	1109.4661	985.0146	873.7359	-2.33	2.08
13	1051.4226	934.9440	830.6210	-2.31	2.07
14	996.7169	887.6792	789.8583	-2.29	2.06
15	945.1404	843.0486	751.3077	-2.27	2.04
16	896.4981	800.8922	714.8380	-2.26	2.03
17	850.6086	761.0603	680.3265	-2.24	2.02
18	807.3024	723.4134	647.6580	-2.22	2.00
19	766.4212	687.8205	616.7252	-2.20	1.99
20	727.8172	654.1596	587.4271	-2.18	1.98
21	691.3524	622.3161	559.6694	-2.16	1.96
22	656.8979	592.1831	533.3634	-2.14	1.95
23	624.3328	563.6604	508.4261	-2.12	1.93
24	593.5446	536.6540	484.7796	-2.10	1.92
25	564.4275	511.0760	462.3510	-2.09	1.90
26	536.9865	486.9352	441.1516	-2.07	1.89
27	511.0105	464.0500	421.0258	-2.05	1.87
28	486.4151	442.3499	401.9146	-2.03	1.86
29	463.1208	421.7683	383.7626	-2.01	1.84
30	441.0535	402.2430	366.5175	-1.99	1.83
31	420.1431	383.7151	350.1301	-1.97	1.81
32	400.3242	366.1295	334.5542	-1.95	1.80
33	381.5350	349.4341	319.7460	-1.93	1.78
34	363.7176	333.5801	305.6645	-1.90	1.76
35	346.8176	318.5216	292.2709	-1.88	1.75
36	330.7839	304.2151	279.5286	-1.86	1.73
37	315.5682	290.6199	267.4031	-1.84	1.71
38	301.1254	277.6976	255.8620	-1.82	1.70
39	287.4128	265.4119	244.8745	-1.80	1.68
40	274.3905	253.7288	234.4118	-1.78	1.66
41	262.0206	242.6161	224.4465	-1.76	1.64
42	250.2676	232.0436	214.9529	-1.74	1.63
43	239.0983	221.9825	205.9065	-1.71	1.61
44	228.4809	212.4060	197.2844	-1.69	1.59
45	218.3860	203.2887	189.0648	-1.67	1.57
46	208.7855	194.6066	181.2273	-1.65	1.55
47	199.6531	186.3369	173.7524	-1.63	1.54
48	190.9639	178.4584	166.6217	-1.60	1.52
49	182.6945	170.9508	159.8181	-1.58	1.50
50	174.8228	163.7951	153.3249	-1.56	1.48
51	167.3280	156.9733	147.1268	-1.53	1.46
52	160.1904	150.4683	141.2090	-1.51	1.44
53	153.3914	144.2641	135.5577	-1.49	1.42


				Functions	and control
54	146.9136	138.3454	130.1598	-1.47	1.40
55	140.7403	132.6980	125.0027	-1.44	1.38
56	134.8559	127.3081	120.0746	-1.42	1.36
57	129.2457	122.1630	115.3645	-1.40	1.34
58	123.8956	117.2504	110.8618	-1.37	1.32
59	118.7926	112.5589	106.5564	-1.35	1.30
60	113.9241	108.0776	102.4388	-1.32	1.28
61	109.2784	103.7961	98.5000	-1.30	1.26
62	104.8443	99.7046	94.7315	-1.28	1.23
63	100.6112	95.7939	91.1253	-1.25	1.21
64	96.5692	92.0553	87.6735	-1.23	1.19
65	92.7088	88.4805	84.3690	-1.20	1.17
66	89.0211	85.0614	81.2048	-1.18	1.15
67	85.4976	81.7908	78.1744	-1.15	1.12
68	82.1303	78.6615	75.2715	-1.13	1.10
69	78.9116	75.6668	72.4902	-1.10	1.08
70	75.8343	72.8004	69.8249	-1.08	1.06
71	72.8916	70.0561	67.2703	-1.05	1.03
72	70.0770	67.4283	64.8213	-1.03	1.01
73	67.3844	64.9115	62.4731	-1.00	0.99
74	64.8080	62.5006	60.2211	-0.98	0.96
75	62.3423	60.1906	58.0609	-0.95	0.94
76	59.9821	57.9770	55.9885	-0.92	0.92
77	57.7223	55.8552	53.9998	-0.90	0.89
78	55.5583	53.8210	52.0912	-0.87	0.87
79	53.4856	51.8706	50.2591	-0.85	0.84
80	51.5000	50.0000	48.5000	-0.85	0.84
81	49.7063	48.2057	46.7083	-0.85	0.85
82	47.9835	46.4842	44.9911	-0.89	0.89
83	46.3286	44.8323	43.3452	-0.93	0.92
84	44.7385	43.2468	41.7672	-0.96	0.95
85	43.2105	41.7248	40.2540	-1.00	0.99
86	41.7386	40.2604	38.7996	-1.03	1.02
87	40.3241	38.8545	37.4048	-1.07	1.06
88	38.9643	37.5045	36.0668	-1.11	1.09
89	37.6569	36.2078	34.7831	-1.14	1.13
90	36.3996	34.9622	33.5513	-1.18	1.16
91	35.1903	33.7653	32.3689	-1.22	1.19
92	34.0269	32.6151	31.2338	-1.26	1.23
93	32.9075	31.5096	30.1438	-1.30	1.27
94	31.8302	30.4467	29.0970	-1.33	1.30
95	30.7933	29.4246	28.0915	-1.37	1.34
96	29.7950	28.4417	27.1254	-1.41	1.37
97	28.8337	27.4961	26.1970	-1.45	1.41


				Functions and	Control
98	27.9078	26.5864	25.3048	-1.49	1.44
99	27.0160	25.7110	24.4470	-1.53	1.48
100	26.1569	24.8685	23.6222	-1.57	1.52
101	25.3290	24.0574	22.8291	-1.61	1.55
102	24.5311	23.2765	22.0662	-1.65	1.59
103	23.7620	22.5245	21.3323	-1.69	1.63
104	23.0205	21.8002	20.6261	-1.73	1.66
105	22.3055	21.1025	19.9465	-1.77	1.70
106	21.6159	20.4303	19.2924	-1.81	1.74
107	20.9508	19.7825	18.6626	-1.85	1.77
108	20.3091	19.1582	18.0563	-1.89	1.81
109	19.6899	18.5564	17.4723	-1.93	1.85
110	19.0924	17.9761	16.9098	-1.98	1.89
111	18.5157	17.4166	16.3680	-2.02	1.93
112	17.9590	16.8769	15.8458	-2.06	1.96
113	17.4214	16.3564	15.3427	-2.10	2.00
114	16.9023	15.8542	14.8577	-2.15	2.04
115	16.4010	15.3696	14.3902	-2.19	2.08
116	15.9167	14.9020	13.9394	-2.23	2.12
117	15.4489	14.4506	13.5047	-2.27	2.16
118	14.9968	14.0149	13.0855	-2.32	2.19
119	14.5599	13.5942	12.6811	-2.36	2.23
120	14.1376	13.1879	12.2909	-2.41	2.27
121	13.7294	12.7955	11.9144	-2.45	2.31
122	13.3347	12.4165	11.5510	-2.50	2.35
123	12.9531	12.0503	11.2003	-2.54	2.39
124	12.5840	11.6965	10.8617	-2.58	2.43
125	12.2270	11.3545	10.5348	-2.63	2.47
126	11.8817	11.0240	10.2191	-2.68	2.51
127	11.5475	10.7046	9.9142	-2.72	2.55
128	11.2242	10.3957	9.6197	-2.77	2.59
129	10.9112	10.0970	9.3352	-2.81	2.63
130	10.6084	9.8082	9.0602	-2.86	2.67
131	10.3151	9.5288	8.7945	-2.91	2.71
132	10.0312	9.2586	8.5378	-2.95	2.75
133	9.7563	8.9971	8.2895	-3.00	2.80
134	9.4901	8.7441	8.0495	-3.05	2.84
135	9.2322	8.4993	7.8175	-3.09	2.88
136	8.9824	8.2623	7.5931	-3.14	2.92
137	8.7404	8.0329	7.3760	-3.19	2.96
138	8.5059	7.8108	7.1660	-3.24	3.00
139	8.2787	7.5958	6.9629	-3.29	3.04
140	8.0584	7.3875	6.7664	-3.33	3.09

8.Dimensional drawings

9.Center of gravity

10. Service Diagnosis

10.1 Caution for Diagnosis

The operation lamp flashes when any of the following errors is detected.

1. When a protection device of the indoor or outdoor unit is activated or when the thermistor malfunctions, disabling equipment operation.

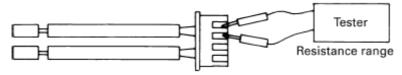
2. When a signal transmission error occurs between the indoor and outdoor units. In either case, conduct the diagnostic procedure described in the following pages.

10.2 Problem Symptoms and Measures

Symptom	Check Item	Details of Measure
None of the units operates	Check the power supply.	Check to make sure that the rated voltage is supplied.
	Check the indoor PCB	Check to make sure that the indoor PCB is broken
Operation sometimes stops.	Check the power supply.	A power failure of 2 to 10 cycles can stop air conditioner operation.
Equipment operates but does not cool, or does not heat (only for heat pump)	Check for faulty operation of the electronic expansion valve.	Set the units to cooling operation, and compare the temperatures of the liquid side connection pipes of the connection section among rooms to check the opening and closing operation of the electronic expansion valves of the individual units.
	Diagnosis by service port pressure and operating current.	Check for insufficient gas.
Large operating noise and vibrations	Check the installation condition.	Check to make sure that the required spaces for installation (specified in the Technical Guide, etc.) are provided.

10.3 Error Codes and Description indoor display

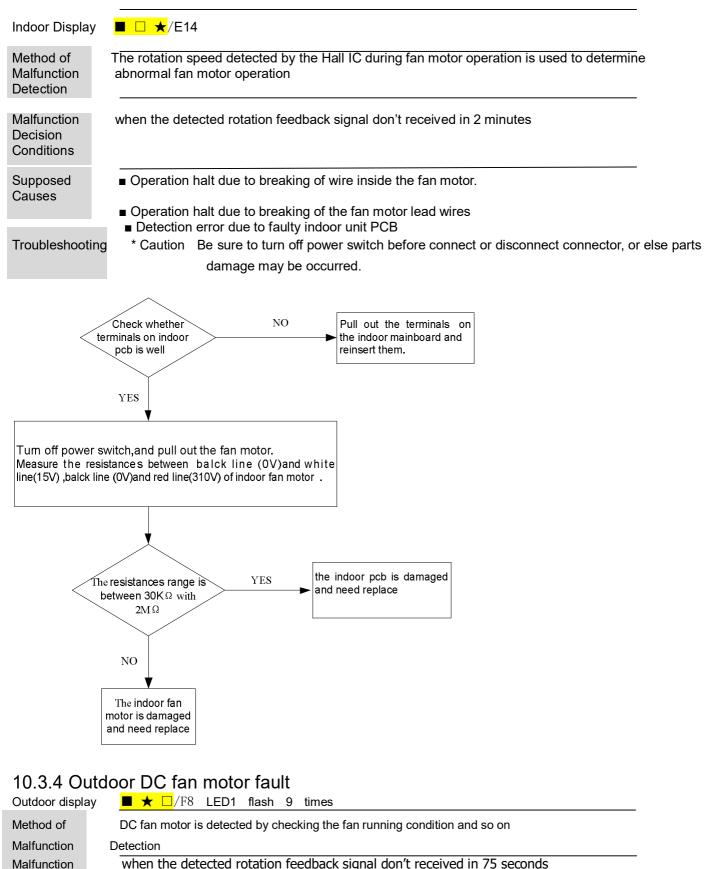
	Code indication				
	Indoor indicatio Other display	displaying panel code on <u>Only For 498 and</u> 498A display (Red/Green Time Run □ On ★Flash ■Off_)	Outdoor (LED1 flash times)	fault description	Reference Page
Indoor and Outdoor	E7		15	Communication fault between indoor and outdoor units	Page .42
Indoor	E1	<mark>★ ■ ■</mark>		Room temperature sensor failure	Page 31.
Malfunction	E2	★ □ □		Heat-exchange sensor failure	Page 31.
	E4	<mark>★ □ ★</mark>		Indoor EEPROM error	Page 32.
	E14 ■ □ ★ Indoor fan motor malfunction			Page 33	
	F12		1	Outdoor EEPROM error	Page .32
	F1		2	The protection of IPM	Page .36
Outdoor Malfunction	F22	<mark>★ ★ ■</mark>	3	Overcurrent protection of AC electricity for the outdoor model	Page .37
	F3		4	CommunicationfaultbetweentheIPMoutdoorPCB	Page.39
	F19		6	Power voltage is too high or low	Page .40
	F4		8	Overheat protection for Discharge temperature	Page .41
	F21		10	Defrost temperature sensor failure	Page 31.
	F7	■ ★ ■	11	Suction temperature sensor failure	Page .3 1
	F6		12	Ambient temperature sensor failure	Page .3 1
	F25	★ □ ■	13	Discharge temperature sensor failure	Page .3 1
	F11	■ ★ ■	18	deviate from the normal for the compressor	Page .44
	F28	■★■	19	Loop of the station Page	

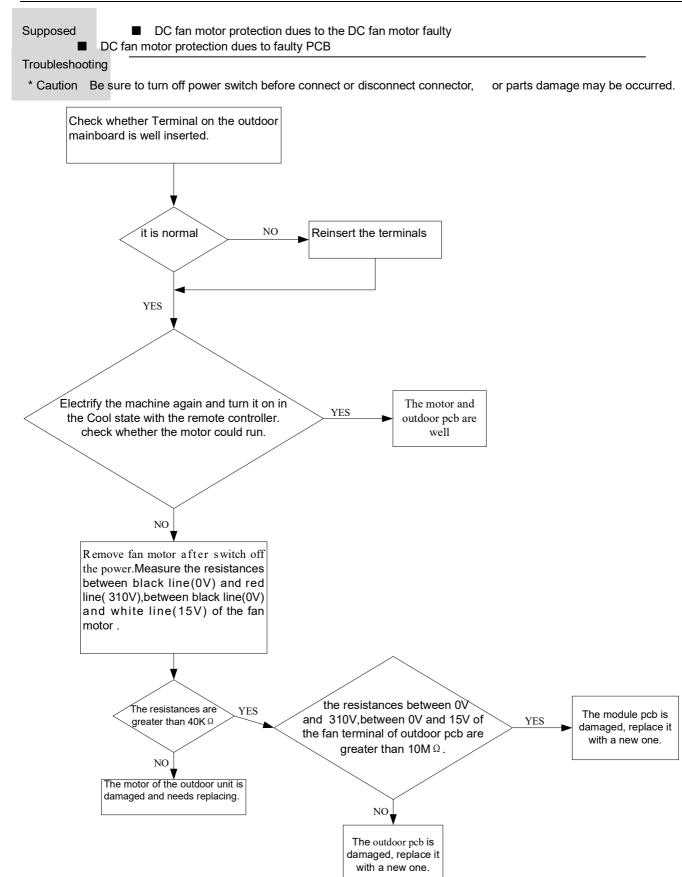

F2	24	Overcurrent compressor	of	the	Page .37
F23	25	Overcurrent pr single-phase compressor	otection of	n for the	Page .43

10.3.1 Thermistor or Related Abnormality

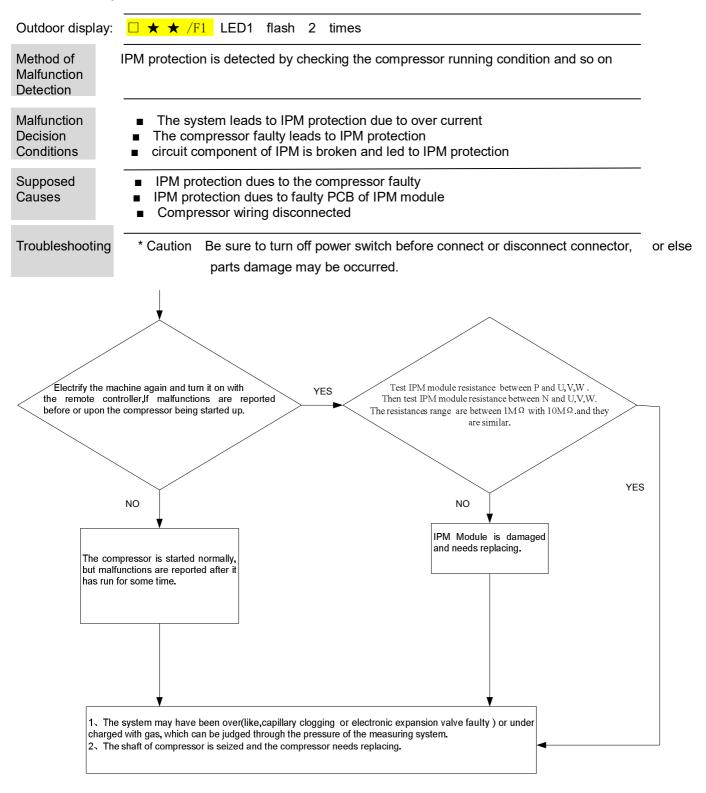
Indoor Display	★ ■ ■/ E1: Room temperature sensor failure			
	★ 🛛 🗖/E2: Heat-exchange sensor failure			
Outdoor display	LED1 flash 10 times: Defrost temperature sensor failure			
	LED1 flash 11 times: Suction temperature sensor failure			
	LED1 flash 12 times: Ambient temperature sensor failure			
	LED1 flash 13 times: Discharge temperature sensor failure			
Method of Malfunction Detection	The temperatures detected by the thermistors are used to determine thermistor errors			
Malfunction Decision Conditions	 When the thermistor input is more than 4.92V or less than 0.08V during compressor operation. Note: The values vary slightly in some models 			
Supposed Causes	 Faulty connector connection Faulty thermistor Faulty PCB 			
Troubleshooting	* Caution Be sure to turn off power switch before connect or disconnect connector, or else parts damage may be occurred.			
	Check the connector connection.			
	NO Correct the connection			
	Is it normal?			
	Yes			
	Thermistor resistance check			
	Is it normal?			
	Yes			

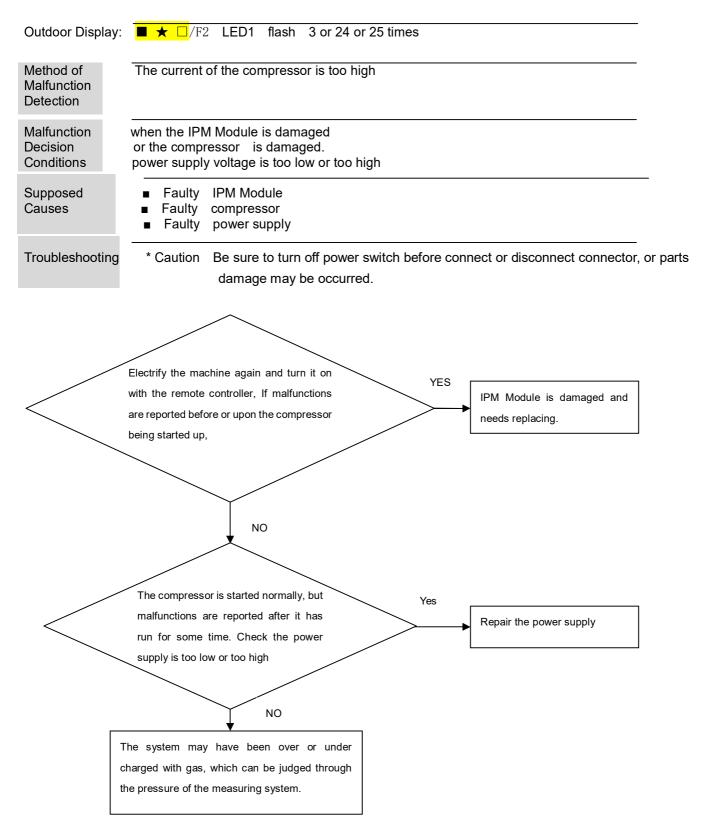
Thermistor resistance check method:

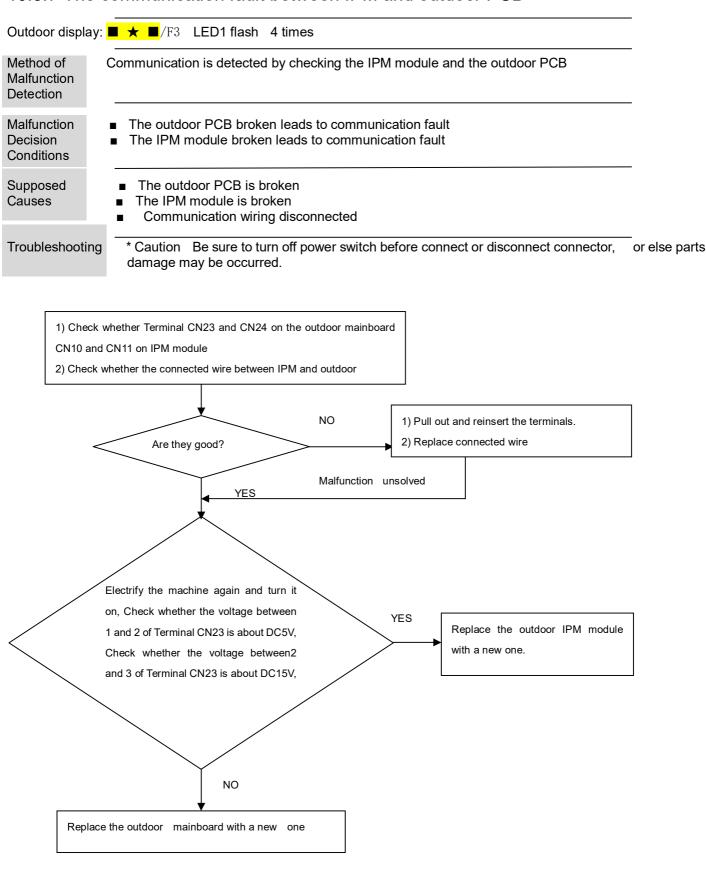

Remove the connector of the thermistor on the PCB, and measure the resistance of thermistor using tester. The relationship between normal temperature and resistance is shown in the value of indoor thermistor.


10.3.2 EEPROM abnormal

Indoor Display	★ □ ★/E4: Indoor EEPROM error
Indoor display	■ ★ ■/F12: Outdoor EEPROM error; Outdoor LED1 flash 1 times
Method of	The Data detected by the EEPROM are used to determine MCU
Malfunction	
Detection	
Malfunction	When the data of EEPROM is error or the EEPROM is damaged
Decision	when the data of EEF NOM is end of the EEF NOM is damaged
Conditions	
Supposed	■ Faulty EEPROM data
Causes	■ Faulty EEPROM
	■ Faulty PCB
Troubleshooting	* Caution Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred.
	damage may be occurred.
	Replace the indoor or outdoor mainboard.

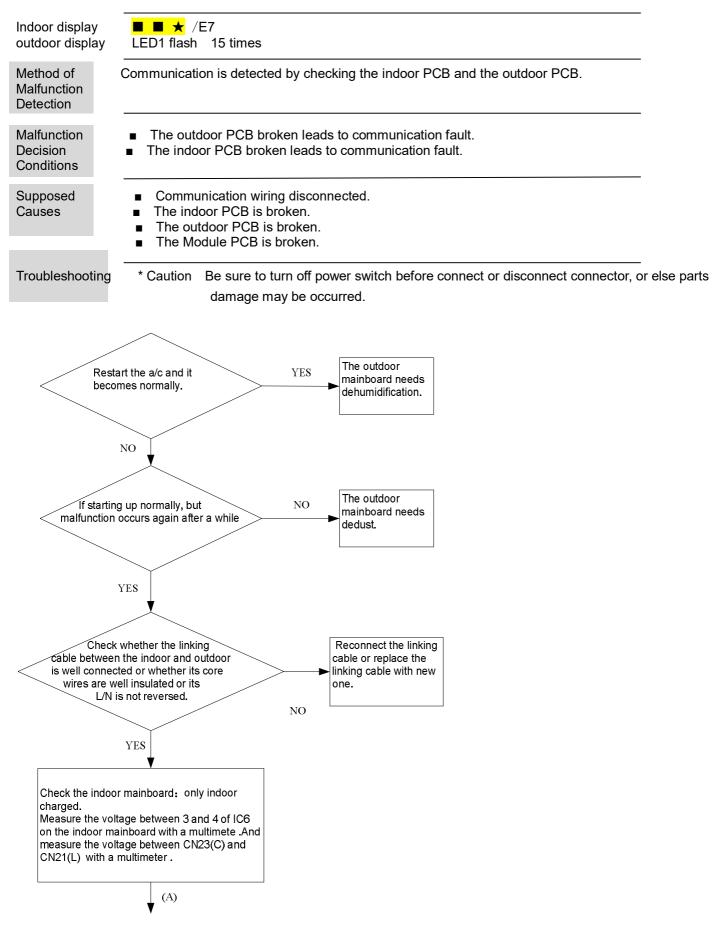

10.3.3 Indoor DC fan motor malfunction

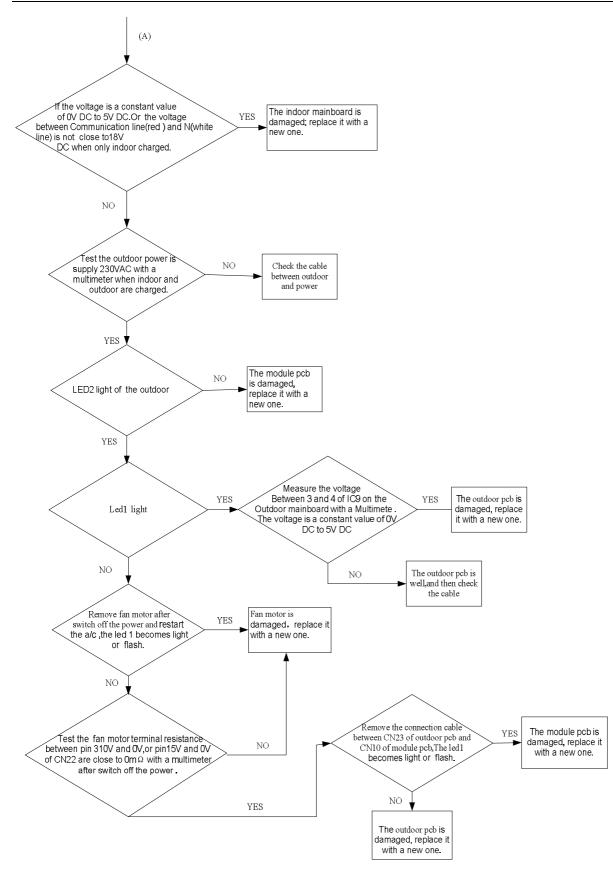

Decision Conditions


10.3.5 IPM protection

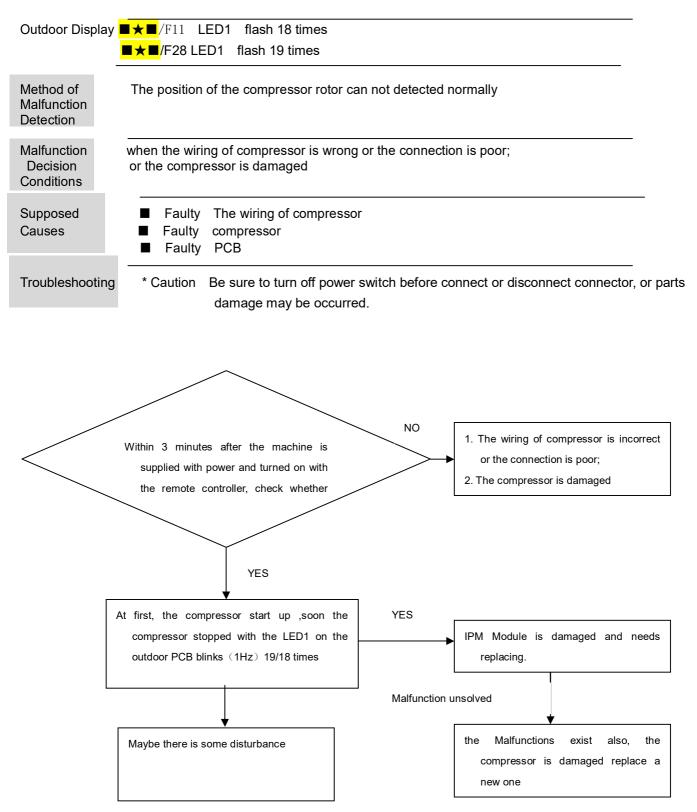
10.3.6 Over-current of the compressor

10.3.7 The communication fault between IPM and outdoor PCB

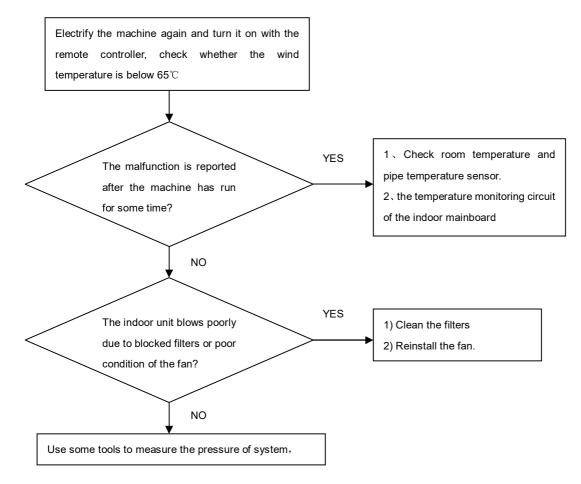

Outdoor display: $\blacksquare \star \Box$ /F19 LED1 flash 6 times The power supply is over voltage Method of An abnormal voltage rise or fall is detected by checking the specified voltage detection circuit. Malfunction Detection Malfunction An voltage signal is fed from the voltage detection circuit to the microcomputer Decision Conditions Supposed Supply voltage not as specified the IPM module is broken Causes the outdoor PCB is broken * Caution Be sure to turn off power switch before connect or disconnect connector, or else parts Troubleshooting damage may be occurred. Electrify the machine again and turn it on with the remote controller. Check whether the compressor is started normally Yes Maybe there is some disturbance Is it ok? No Yes Test the outdoor power supply Change the IPM module (+310VDC) with a multimeter. check whether the power is >150 V or <390V? NO Yes Change the IPM module ~230 is ok? NO This question may be caused by the power. Repair the power supply.


10.3.8 Power Supply Over or under voltage fault

Outdoor display: 🔳 ★ 📕/F4 LED1 flash 8 times Method of The Discharge temperature control is checked with the temperature being detected Malfunction by the Discharge pipe thermistor Detection Malfunction when the compressor discharge temperature is above 110°C Decision Conditions Electronic expansion valve defective Supposed Causes Faulty thermistor Faulty PCB Troubleshooting Be sure to turn off power switch before connect or disconnect connector, * Caution or else parts damage may be occurred. Electrify the machine again and turn it on with the remote controller, then measure the temperature at the exhaust temperature sensor of the compressor on the outdoor unit 1) The cryogen may have been leaked during YES installation, or there may be leakage in the piping The temperature exceeds system. **110** ℃ shortly after the 2) There may be other causes to make the exhaust machine starts up? temperature too high. NO Malfunctions occur after running for some time even though the measured temperature is below 110℃. Pull out the exhaust sensor and measure its resistance at standard temperatures according the to resistance-temperature table YES The sensor is damaged. Replace the sensor The results deviate with a new one. much? NO The outdoor mainboard is damaged and needs be replaced

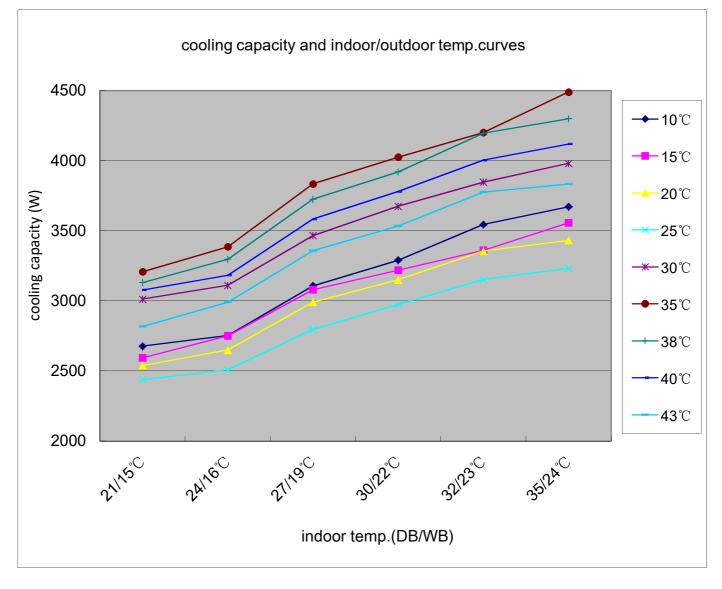

10.3.9 Overheat Protection For Discharge Temperature

10.3.10 The communication fault between indoor and outdoor

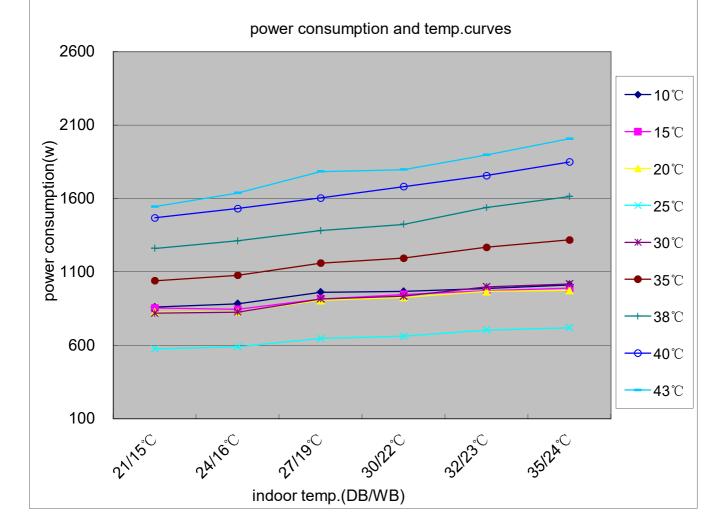


10.3.11 Loss of synchronism detection Inverter side current detection is abnormal

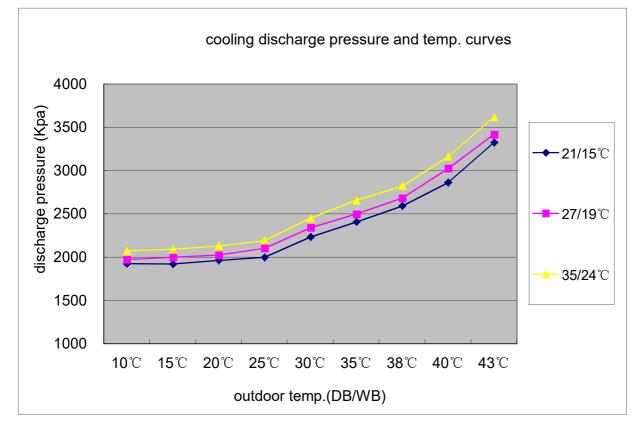
10.3.12 High work-intense protection


Outdoor display	★★★/E9 LED1 flash 21 times	-
Method of Malfunction Detection	High work-intense control is activated in the heating mode if the temperature being sensed by the heat exchanger thermistor exceeds the limit.	-
Malfunction Decision Conditions	Activated when the temperature being sensed by the heat exchanger rises above $65^{\circ}C$ twices in 30 minutes.	
Supposed Causes	 Faulty electronic expansion valve Dirty heat exchanger Faulty heat-exchange sensor Insufficient gas 	
Troubleshooting	* Caution Be sure to turn off power switch before connect or disconnect connector, parts damage may be occurred.	or else

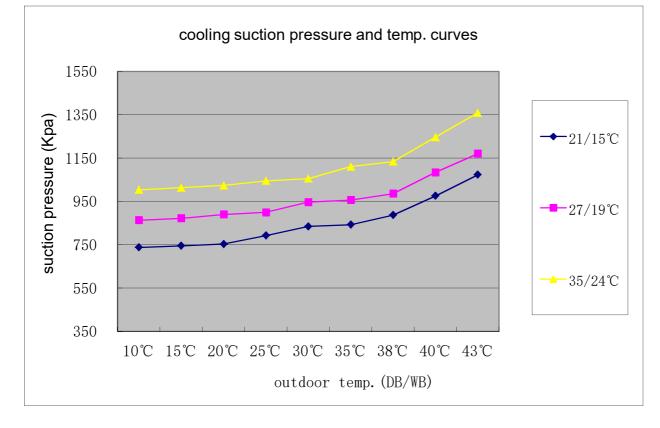
11.Performence and cerves diagrams


11.1 Cooling capacity-temperature curves

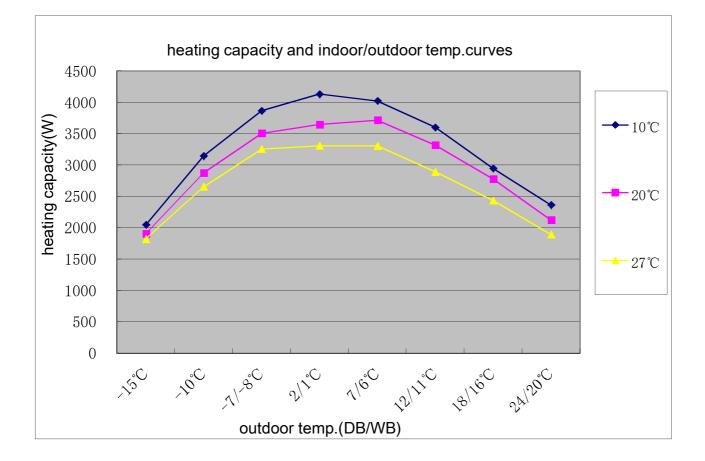
AS12TAMFRA 1U12YEMFRA performance curves									
cooling value-temerature table									
indoor temp.	outdoor	temp.							
DB/WB	10 ℃	15 ℃	20 °C	25 ℃	30 ℃	35 ℃	38 ℃	40 ℃	43 ℃
21/15℃	2678	2594	2540	2439	3013	3208	3131	3078	2818
24/16 ℃	2754	2751	2650	2509	3112	3386	3298	3183	2991
27/19 ℃	3108	3080	2991	2797	3465	3835	3725	3584	3359
30/22℃	3290	3220	3150	2975	3675	4025	3920	3780	3535
32/23 ℃	3545	3362	3356	3153	3847	4201	4195	4003	3777
35/24 ℃	3672	3557	3432	3232	3980	4489	4299	4119	3834


11.2 Cooling power consumption value- temperature curves

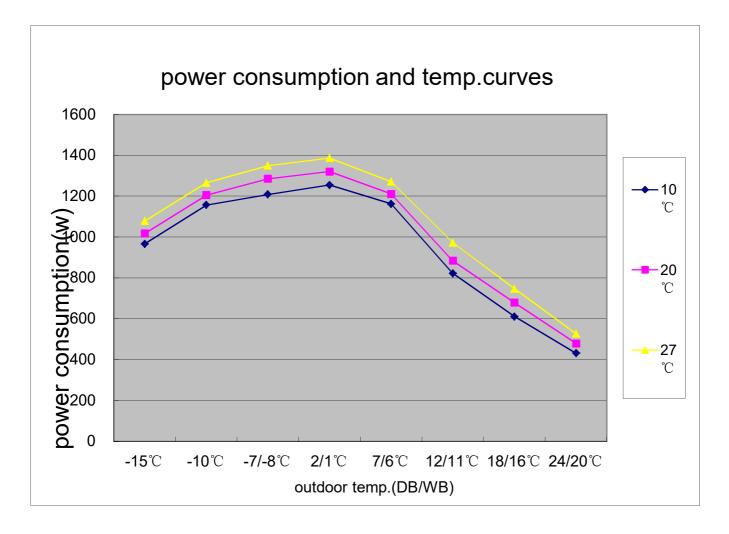
AS12TAMHRA 1U12YEMFRA performance curves									
power consumption value-temp.table									
indoor temp.	outdoor	temp.							
DB/WB	10 ℃	15 ℃	20 ℃	25 ℃	30 ℃	35 ℃	38 ℃	40 ℃	43 ℃
21/15 ℃	861	853	827	576	819	1040	1261	1469	1545
24/16 ℃	884	845	829	590	827	1077	1312	1532	1638
27/19 ℃	962	916	906	647	916	1161	1381	1603	1783
30/22 ℃	968	947	926	662	934	1194	1423	1681	1797
32/23 ℃	987	971	967	705	999	1268	1539	1756	1897
35/24 ℃	1012	990	975	720	1018	1318	1614	1849	2007


11.3 Cooling discharge pressure curves

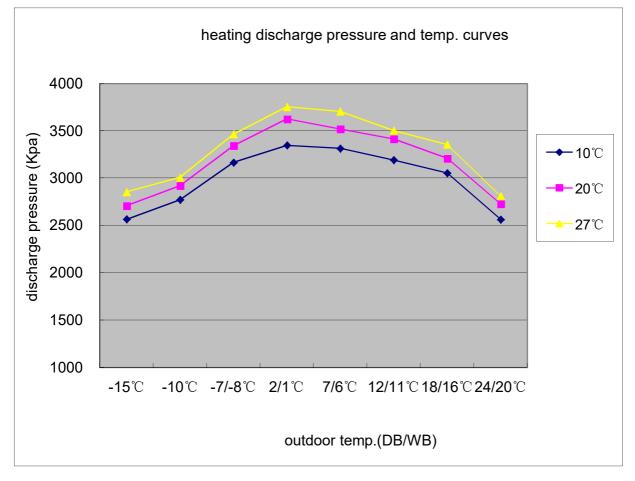
AS12TAMFRA 1U12YEMFRA performance curves							
cooling discharge pressure.table							
outdoor temp. (humidity 46%)	indoor temp.						
DB/WB	21/15 ℃	27/19 ℃	35/24 ℃				
10°C	1924	1973	2073				
15℃	1921	1999	2092				
20 °C	1964	2025	2130				
25 ℃	1999	2104	2193				
30 ℃	2234	2341	2450				
35 ℃	2408	2499	2657				
38 °C	2592	2683	2821				
40 °C	2862	3025	3161				
43 ℃	3324	3419	3619				


11.4 Cooling suction pressure curves

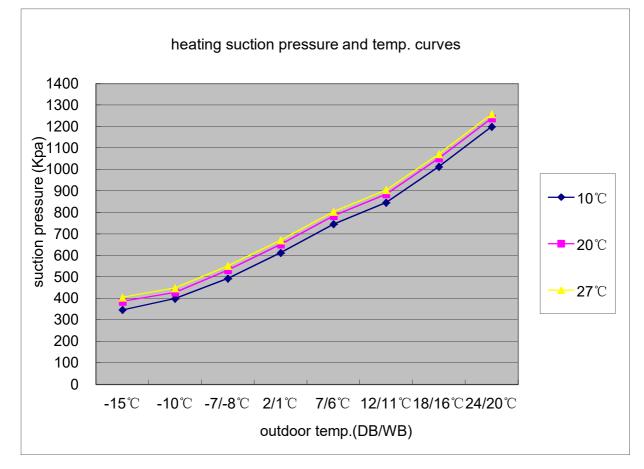
AS12TAMHRA 1U12YEMFRA performance curves							
cooling suction pressure.table							
outdoor temp.	indoor temp.						
(humidity 46%)	indoor temp.						
DB/WB	21/15℃	27/19 ℃	35/24 ℃				
10 ℃	738	864	1004				
15℃	746	873	1014				
20°C	753	891	1024				
25°C	793	900	1045				
30 ℃	835	947	1056				
35 ℃	843	956	1111				
38°C	887	986	1134				
40°C	976	1085	1247				
43°C	1074	1171	1360				


11.5 Heating capacity-temperature curves

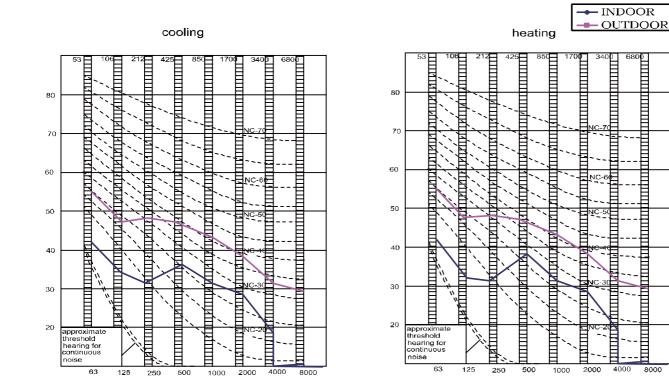
AS12TAMFRA 1U12YEMFRA performance curves			
heating capacity and indoor/outdoor temp.table			
outdoor temp.	indoor temp.(h	umidity 46%)	
DB/WB	10 ℃	20 ℃	27 ℃
-15 ℃	2048	1908	1820
-10°C	3147	2877	2654
-7/-8 ℃	3868	3507	3259
2/1 ℃	4135	3649	3309
7/6 ℃	4024	3716	3306
12/11 ℃	3602	3318	2893
18/16 ℃	2947	2779	2437
24/20 ℃	2364	2125	1895


AS12TAMFRA 1U12YEMFRA performance curves							
power consumption value-temp.table							
outdoor temp.	indoor temp.(h	umidity 46%)					
DB/WB	10 ℃	20°C	27°C				
-15℃	966	1017	1078				
-10° ℃	1157	1205	1266				
-7/-8℃	1208	1285	1350				
2/1 ℃	1255	1321	1387				
7/6℃	1162	1211	1271				
12/11 ℃	823	885	973				
18/16℃	611	679	747				
24/20 ℃	431	479	527				

11.6 Heating power consumption value- temperature curves

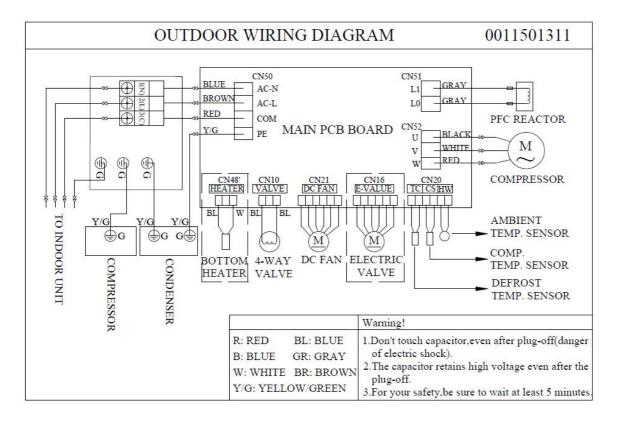

11.7 Heating discharge pressure curves

AS12TAMFRA 1U12YEMFRA performance curves	5						
heating discharge pressure.table	heating discharge pressure.table						
outdoor temp	indoor ter	np.					
DB/WB	10 ℃	20 ℃	27 ℃				
-15 ℃	2567	2710	2856				
-10 ℃	2773	2922	3007				
-7/-8 ℃	3166	3344	3465				
2/1 ℃	3347	3626	3754				
7/6 ℃	3315	3520	3705				
12/11 ℃	3191	3414	3503				
18/16℃	3054	3210	3357				
24/20 ℃	2564	2728	2812				

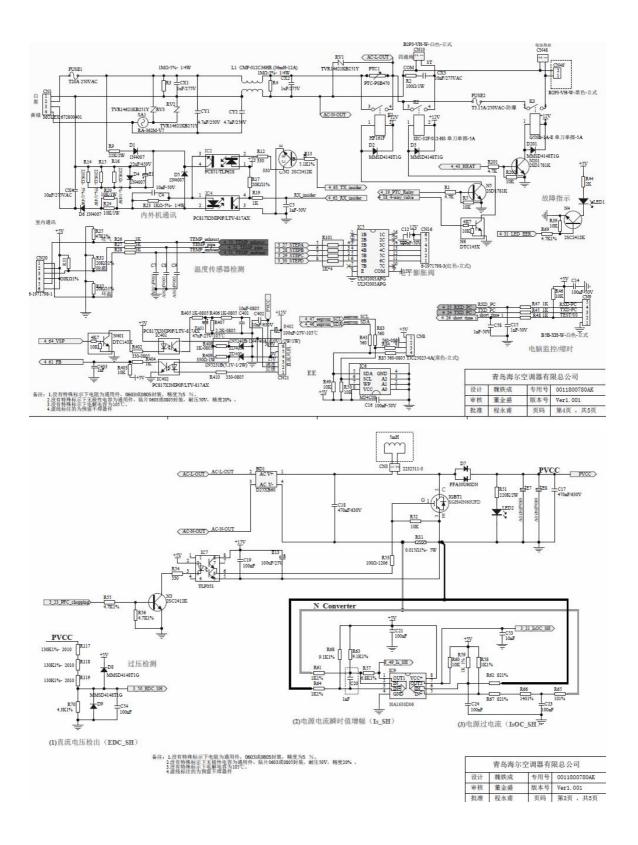

11.8 Heating suction pressure curves

AS12TAMFRA 1U12YEMFRA performance curves						
heating suction pressure.table						
outdoor temp	indoor tem	p.				
DB/WB	10 ℃	20 ℃	27 ℃			
-15 ℃	347	386	406			
-10 ℃	400	429	449			
-7/-8 ℃	494	533	553			
2/1 ℃	613	652	672			
7/6℃	746	785	805			
12/11℃	847	886	906			
18/16℃	1014	1053	1073			
24/20 ℃	1200	1239	1259			

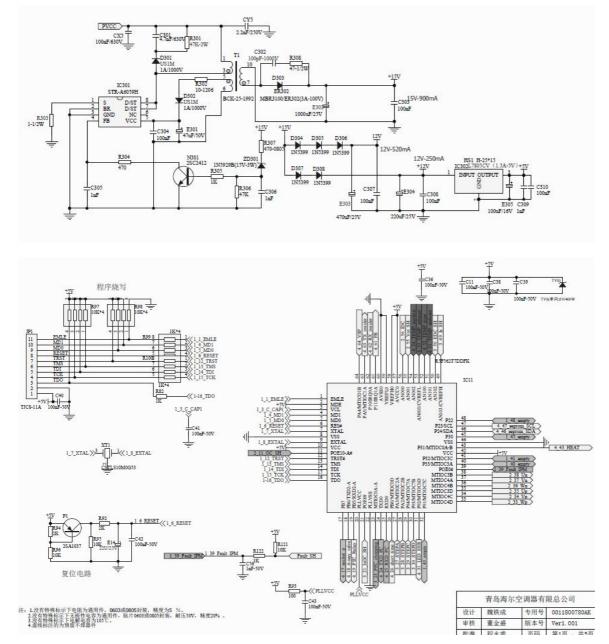
12.Sound level


	Sound pres					
Model	230V,50HZ				Sound power level	
	Cooling/heating			Measuring location of microphone	(cooling/heating)	
	н	L	SL			
1U12YEMFRA	50				62	

8000


13 Wiring Diagrams

13.1 Outdoor unit


13.2 Outdoor unit control board circuit diagrams

Haier

Haier

.

Sincere Forever

Haier Group

Haier Industrial Park, No.1, Haier Road

266101, Qingdao, China_

Http: //www.haier.com

Edited by : Shi haiyan

Yang wei

Signed by : Wang caiping

Approved by: Yang wenjun